Abstract

We have prepared and investigated the structural, compositional, morphological, and photochemical properties of N-doped TiO2(110), -(100), and -(001) epitaxial films grown by means of plasma-assisted molecular beam epitaxy. The N solid solubility is limited to ∼1−2 atom % of the total anions in the lattice in films where excellent long-range structural order is maintained throughout growth. The photochemical activity of the resulting surfaces was evaluated by using hole-mediated decomposition of adsorbed trimethyl acetate. Undoped surfaces of the three orientations exhibited comparable photochemical activities. However, the dependence of the photochemical activity on N concentration shows a marked crystallographic dependence. The results are rationalized in terms of the apparent crystallographic anisotropy of hole mobility as well as hole trapping and detrapping probabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.