Abstract

Heteroepitaxial GexSi1−x alloy layers have been formed by pulsed laser induced mixing of pure germanium films and Si (100) substrates. Ge films 50–200 Å thick are electron beam evaporated onto Si (100) under ≤1×10−7 Torr vacuum. The near surface of the sample then undergoes a rapid melt and regrowth process using 2–10 pulses from a XeCl excimer laser. The laser has a 37-ns pulse width at 308 nm and its energy density of 0.5–1.5 J/cm2 is precisely homogenized into a 4×4 mm square area. The alloy layers are 250–1600 Å thick, have a Ge fraction x=2.5–19%, and exhibit excellent crystallinity as evaluated by MeV ion channeling and lattice resolution cross-sectional transmission electron microscopy. Unlike layer growth by molecular beam epitaxy, this approach is insensitive to minor levels of contamination because the original Ge/Si interface is melted through during the laser processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.