Abstract

The electrical and optical material properties of epitaxial Ge1−xSnx and SiyGe1−x−ySnx are of high interest for novel device applications. However, the limited Sn solubility in Ge makes the epitaxial growth of Ge1−xSnx and SiyGe1−x−ySnx challenging. Most of the literature describing the epitaxial growth is for Ge2H6 and SnCl4 as Ge and Sn precursors, respectively. A more recent publication deals with the epitaxial growth of high-quality Ge1−xSnx with the more conventional GeH4. In this manuscript, we compare the structural and optical material quality of Ge1−xSnx, epitaxially grown on Ge virtual substrates as a function of growth pressure, growth temperature, the choice of the carrier gas (H2 or N2) and the choice of the Ge precursor (GeH4 versus Ge2H6). The best material quality in terms of surface morphology and photoluminescence characteristics is obtained if GeH4 is used as a Ge precursor. For Ge1−xSnx grown with Ge2H6 and at atmospheric pressure, pyramidical defects can be seen and there is a risk for uncontrolled local Sn agglomeration. The pyramidical defects are not observed on Ge1−xSnx layers grown at reduced pressure, but the highest achievable substitutional Sn concentration is lower. No pyramidical defects are found for Ge1−xSnx layers grown with GeH4 and the issue of uncontrolled local Sn agglomeration does not appear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.