Abstract

The fundamental mechanisms underlying the superior radiation tolerance properties of oxide-dispersion-strengthened ferritic steels and nanostructured ferritic alloys are poorly understood. Thin film heterostructures of Fe/Y2O3 can serve as a model system for fundamental studies of radiation damage. Epitaxial thin films of Y2O3 were deposited by pulsed laser deposition on 8% Y:ZrO2 (YSZ) substrates with (100), (110), and (111) orientation. Metallic Fe was subsequently deposited by molecular beam epitaxy. Characterization by X-ray diffraction and Rutherford backscattering spectrometry in the channeling geometry revealed a degree of epitaxial or axiotaxial orientation for Fe(211) deposited on Y2O3(110)/YSZ(110). In contrast, Fe on Y2O3(111)/YSZ(111) was fully polycrystalline, and Fe on Y2O3(100)/YSZ(100) exhibited out-of-plane texture in the [110] direction with little or no preferential in-plane orientation. Scanning transmission electron microscopy imaging of Fe(211)/Y2O3(110)/YSZ(110) revealed a strongly islanded morphology for the Fe film, with no epitaxial grains visible in the cross-sectional sample. Well-ordered Fe grains with no orientation to the underlying Y2O3 were observed. Well-ordered crystallites of Fe with both epitaxial and non-epitaxial orientations on Y2O3 are a promising model system for fundamental studies of radiation damage phenomena. This is illustrated with preliminary results of He bubble formation following implantation with a helium ion microscope. He bubble formation is shown to preferentially occur at the Fe/Y2O3 interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call