Abstract

Nanometer-sized In particles (5−45 nm) embedded in the Al matrix were prepared by using melt-spinning and ball-milling techniques. Different crystallographic orientationships between In nanoparticles and the Al matrix were constructed by these two approaches. Melting behavior of the In particles were investigated by means of differential scanning calorimetry (DSC). It was found that the epitaxially oriented In nanoparticles (with the Al matrix) in the melt-spun sample were superheated to about 0−38 °C, whereas the randomly oriented In particles in the ball-milled sample melted below its equilibrium melting point by about 0−22 °C. We suggest that the melting temperature of In nanoparticles can be either enhanced or depressed, depending on the epitaxy between In and the Al matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call