Abstract

Crystallization of well-defined precision polyethylene with fluorine substituent on every 21st backbone carbon (PE21F) induced by low-dimensional carbonaceous nanofillers (carbon nanotube (CNT) and reduced graphene oxide (RGO)) via solution crystallization and supercritical CO2 assisted solution crystallization were investigated. Transmission electron microscopy was used to investigate the morphology of carbonaceous nanofiller-induced PE21F crystals. The kebab-like and rod-like crystals formed on the CNT and RGO, respectively. Selected area electron diffraction (SAED) pattern revealed that the c-axis of polymer chain is parallel to the surface of the RGO. Differential scanning calorimetry (DSC) revealed the melting temperatures (Tm) of PE21F lamellae nanocomposites increased with crystallization temperature increasing. The X-ray diffraction (XRD) results showed that the incorporation of nanofillers did not influence the crystal structure of PE21F. The chemical composition of the PE21F nanocomposites measured by X-ray photoelectron spectra (XPS) confirmed substituent F as a defect of chain was accommodated into the crystal lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.