Abstract

Resistive switching memory, which is mostly based on polycrystalline thin films, suffers from wide distributions in switching parameters-including set voltage, reset voltage, and resistance-in their low- and high-resistance states. One of the most commonly used methods to overcome this limitation is to introduce inhomogeneity. By contrast, in this paper, we obtained uniform resistive switching parameters and sufficiently low forming voltage by maximizing the uniformity of an epitaxial thin film. To achieve this result, we deposited an SrFeOx/SrRuO3 heteroepitaxial structure onto an SrTiO3 (001) substrate by pulsed laser deposition, and then we deposited an Au top electrode by electron-beam evaporation. This device exhibited excellent bipolar resistance switching characteristics, including a high on/off ratio, narrow distribution of key switching parameters, and long data retention time. We interpret these phenomena in terms of a local, reversible phase transformation in the SrFeOx film between brownmillerite and perovskite structures. Using the brownmillerite structure and atomically uniform thickness of the heteroepitaxial SrFeOx thin film, we overcame two major hurdles in the development of resistive random-access memory devices: high forming voltage and broad distributions of switching parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.