Abstract

In comparison to noble metals (gold and silver), aluminum is a sustainable and widely applicable plasmonic material owing to its abundance in the Earth’s crust and compatibility with the complementary metal–oxide–semiconductor (CMOS) technology for integrated devices. Aluminum (Al) has a superior performance in the ultraviolet (UV) regime with the lowest material loss and good performance in the full visible regime. Furthermore, aluminum films can remain very stable in ambient environment due to the formation of surface native oxide (alumina) acting as a passivation layer. In this work, we develop an epitaxial growth technique for forming atomically smooth aluminum films on transparent c-plane (0001) sapphire (Al-on-Sapphire, ALOSA) by molecular-beam epitaxy (MBE). The MBE-grown ALOSA films have small plasmonic losses and enable us to fabricate and utilize high-quality plasmonic nanostructures in a variety of optical configurations (reflection, transmission, and scattering). Here, the surface roughness an...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call