Abstract

Episyenite is a quartz-depleted vuggy rock resulting from hydrothermal alteration of granitic rocks. This is the first report of its existence in an island arc, which is identified in a deep drill core of the Toki Cretaceous granite distributed in central Japan. In order to understand the petrographical features of the episyenite, neutron porosity measurement, geochemical analysis, microscopic observation, and X-ray computed tomography scanning were carried out. The results show remarkably high porosity (35.4 %) due to interconnecting vugs and the removal of quartz, plagioclase, and biotite. The Rb–Sr isotopic results and the paragenetic sequence of secondary minerals in the vugs suggest that the hydrothermal alteration process can be divided into an episyenitization stage and a later hydrothermal stage. At the episyenitization stage (70.6 ± 3.1 Ma) ca. 6 million years after the emplacement of the unaltered granite (76.3 ± 1.5 Ma), dissolution of quartz, biotite, and plagioclase occurred and was followed by the precipitation of albite, vermicular chlorite, and platy calcite. The episyenitization is considered as a local alteration of the Toki granite in an isotopically closed system. At the later hydrothermal stage, illite and secondary quartz precipitated from circulating meteoric-derived water in the dissolution vugs. Superimposing alteration at the later hydrothermal stage is limited, which results in the preservation of the episyenite in an almost primitive condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call