Abstract
Answer Set Programming (ASP) is a prominent problem-modeling and solving framework, whose solutions are called answer sets. Epistemic logic programs (ELP) extend ASP to reason about all or some answer sets. Solutions to an ELP can be seen as consequences over multiple collections of answer sets, known as world views. While the complexity of propositional programs is well studied, the non-ground case remains open. This paper establishes the complexity of non-ground ELPs. We provide a comprehensive picture for well-known program fragments, which turns out to be complete for the class NEXPTIME with access to oracles up to SigmaP2. In the quantitative setting, we establish complexity results for counting complexity beyond #EXP. To mitigate high complexity, we establish results in case of bounded predicate arity, reaching up to the fourth level of the polynomial hierarchy. Finally, we provide ETH-tight runtime results for the parameter treewidth, which has applications in quantitative reasoning, where we reason on (marginal) probabilities of epistemic literals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.