Abstract

Mutations in tubulins affect microtubule (MT) dynamics and functions during neuronal differentiation and their genetic interaction provides insights into the regulation of MT functions. We previously used Caenorhabditis elegans touch receptor neurons to analyze the cellular impact of tubulin mutations and reported the phenotypes of 67 tubulin missense mutations, categorized into three classes: loss-of-function (lf), antimorphic (anti), and neomorphic (neo) alleles. In this study, we isolated 54 additional tubulin alleles through suppressor screens in sensitized backgrounds that caused excessive neurite growth. These alleles included 32 missense mutations not analyzed before, bringing the total number of mutations in our collection to 99. Phenotypic characterization of these newly isolated mutations identified three new types of alleles: partial lf and weak neo alleles of mec-7/β-tubulin that had subtle effects and strong anti alleles of mec-12/α-tubulin. We also discovered complex genetic interactions among the tubulin mutations, including the suppression of neo mutations by intragenic lf and anti alleles, additive and synthetic effects between mec-7 neo alleles, and unexpected epistasis, in which weaker neo alleles masked the effects of stronger neo alleles in inducing ectopic neurite growth. We also observed balancing between neo and anti alleles, whose respective MT-hyperstablizing and -destabilizing effects neutralized each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.