Abstract

To explore the role of genetic variants of thiopurine methyltransferase (TPMT) and inosine triphosphate pyrophosphatase (ITPA) in 6-mercaptopurine (6-MP)-induced toxicity in Indian children with acute lymphoblastic leukemia (ALL). Children with ALL receiving 6-MP in maintenance phase of treatment (n = 90) were enrolled in the study. Bidirectional sequencing of TPMT (whole gene) and ITPA (exon 2, exon 3, and intron 2) was undertaken, and correlation between genotype and 6-MP toxicity was assessed. Five variations were observed in TPMT, including two exonic variations, TPMT*12 (374C > T) and TPMT*3C (719A > G), and three intronic, intron 3 (12356C > T), intron 4 (16638C > T), and TPMT rs2842949. Two exonic, ITPA exon -2 (94C → A) and exon 3 of ITPA (138G > A), and one intronic, ITPA intron 2 (A→C), variations were observed in ITPA. Multifactor dimensionality reduction analysis of all the genetic variants showed independent association of ITPA 94 C→A as well as synergic epistatic interactions, i.e., TPMT*12 × ITPA ex3, ITPA ex2 × TPMT*12 × ITPA ex3, and TPMT*3C × ITPA ex2 × TPMT*12 × ITPA ex3, in determining hematological toxicity. This is further substantiated by a multiple linear regression model, which showed moderate predictability of toxicity with these variants (area under the curve = 0.70, p = 0.004). Our results suggest that apart from the individual effect of ITPA 94 C→A, epistatic interactions between the variations of TPMT (*3C, *12) and ITPA (ex2, ex3) are associated with the 6-MP toxicity. Testing these variants facilitates tailoring of the 6-MP therapy in children with ALL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call