Abstract
Slow slip events are part of a spectrum of aseismic processes that relieve tectonic stress on faults. Their spatial distribution in subduction zones has been linked to perturbations in fluid pressure within the megathrust shear zone and subducting oceanic crust. However, physical observations of temporal fluid pressure fluctuations through slow slip cycles remain elusive. Here, we use earthquake focal mechanisms recorded on an ocean-bottom seismic network to show that crustal stresses and fluid pressures within subducting oceanic crust evolve before and during slow slip events. Specifically, we observe that the retrieved stress ratio, which describes the relative magnitudes of the principal compressive stresses, systematically decreases before slow slip events in New Zealand’s northern Hikurangi subduction zone, and subsequently increases during the evolution of each slow slip event. We propose that these changes represent the accumulation and release of fluid pressure within overpressured subducting oceanic crust, the episodicity of which may influence the timing of slow slip event occurrence on subduction megathrusts. This work contributes an improved understanding of the physical driving forces underlying slow subduction earthquakes, and a potential means by which to monitor stress and fluid pressure accumulation in such regions. Stress cycling in subducting crust before and during slow slip events is due to accumulation and release of fluid pressure, according to analysis of small earthquakes in the Hikurangi subduction zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.