Abstract
AbstractEpisodic tremor and slow slip (ETS) downdip of the subduction seismogenic zone are poorly understood slip behaviors of the seismic cycle. Talc, a common metasomatic mineral at the subduction interface, is suggested to host slow slip but this hypothesis has not been tested in the rock record. We investigate actinolite microstructures from talc‐bearing and talc‐free rocks exhumed from the depths of modern ETS (Pimu'nga/Santa Catalina Island, California). Actinolite deformed by dissolution‐reprecipitation creep in the talc‐free rock and dislocation creep ± cataclasis in the talc‐bearing rock. This contrast results from stress amplification in the talc‐bearing rock produced by high strain rates in surrounding weak talc. We hypothesize that higher strain rates in the talc‐bearing sample represent episodic slow slip, while lower strain rates in the talc‐free sample represent intervening aseismic creep. This work highlights the need to consider fluid‐mediated chemical change in studies of subduction zone deformation and seismicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.