Abstract

The meaning we derive from our experiences is not a simple static extraction of the elements, but is largely based on the order in which those elements occur. Models propose that sequence encoding is supported by interactions between high and low frequency oscillations, such that elements within an experience are represented by neural cell assemblies firing at higher frequencies (i.e. gamma) and sequential order is coded by the specific timing of firing with respect to a lower frequency oscillation (i.e. theta). During episodic sequence memory formation in humans, we provide evidence that items in different sequence positions exhibit relatively greater gamma power along distinct phases of a theta oscillation. Furthermore, this segregation is related to successful temporal order memory. These results provide compelling evidence that memory for order, a core component of an episodic memory, capitalizes on the ubiquitous physiological mechanism of theta-gamma phase-amplitude coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.