Abstract

AbstractHigh‐resolution measurements of the air‐ice‐ocean system during an October 2015 event in the Beaufort Sea demonstrate how stored ocean heat can be released to temporarily reverse seasonal ice advance. Strong on‐ice winds over a vast fetch caused mixing and release of heat from the upper ocean. This heat was sufficient to melt large areas of thin, newly formed pancake ice; an average of 10 MJ/m2 was lost from the upper ocean in the study area, resulting in ∼3–5 cm pancake sea ice melt. Heat and salt budgets create a consistent picture of the evolving air‐ice‐ocean system during this event, in both a fixed and ice‐following (Lagrangian) reference frame. The heat lost from the upper ocean is large compared with prior observations of ocean heat flux under thick, multiyear Arctic sea ice. In contrast to prior studies, where almost all heat lost goes into ice melt, a significant portion of the ocean heat released in this event goes directly to the atmosphere, while the remainder (∼30–40%) goes into melting sea ice. The magnitude of ocean mixing during this event may have been enhanced by large surface waves, reaching nearly 5 m at the peak, which are becoming increasingly common in the autumn Arctic Ocean. The wave effects are explored by comparing the air‐ice‐ocean evolution observed at short and long fetches, and a common scaling for Langmuir turbulence. After the event, the ocean mixed layer was deeper and cooler, and autumn ice formation resumed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.