Abstract

Alzheimer's disease (AD) is characterized by progressive memory impairment and the formation of amyloid plaques in the brain. Dysfunctional excitatory synaptic transmission and synaptic plasticity are generally accepted as primary events in the development of AD, and beta-amyloid is intimately involved. Here we describe age related differences in learning, memory, synaptic transmission and long-term potentiation (LTP) in wild type and APPswe/PS1DeltaE9 mice, which produce increasing amounts of Abeta1-42 with age. The mice have both age related and age-independent deficits in radial arm water maze performance. Blind studies of hippocampal slices from transgenic and wild type mice demonstrate that transgenic mice have impaired transient LTP and that the degree of impairment is not related to age from 3 to 12 months. The deficiencies in transient LTP may be related to the behavioral deficits that did not progress with age. The accumulation of beta-amyloid and the episodic memory deficits, both of which increased with age, were not accompanied by an alteration in synaptic transmission or sustained LTP in the in vitro hippocampal slices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.