Abstract

AbstractHigh resolution spectra of post-outburst novae show multiple components of ejected gas that are kinematically distinct. We interpret the observations in terms of episodes of enhanced mass transfer originating from the secondary star that result in the formation of discrete components of circumbinary gas and accretion onto the white dwarf (WD) that trigger nova outbursts. In this picture the concordance between absorption line velocities and emission line widths in most novae occurs as a result of the collision of the expanding nova ejecta with a larger mass of surrounding circumbinary gas. One implication of this model is that much of the accreted gas remains on the WD, leading to a secular increase in WD mass over each outburst event. Alternative scenarios to explain nova spectral evolution are possible that do not invoke circumbinary gas and a possible test of different models is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call