Abstract
We investigated episodic-like (ELM) and procedural memory (PM) in histamine H1 receptor knockout (H1R-KO) mice. In order to relate possible behavioral deficits to neurobiological changes, we examined H1R-KO and wild-type (WT) mice in terms of acetylcholine esterase (AChE) activity in subregions of the hippocampus and AChE and tyrosine hydroxylase (TH) expression in the striatum. Furthermore, we analyzed acetylcholine (ACh), 5-HT and dopamine (DA) levels, including metabolites, in the cerebellum of H1R-KO and WT mice. The homozygous H1R-KO mice showed impaired ELM as compared with the heterozygous H1R-KO and WT mice. The performance of homozygous H1R-KO mice in the ELM task was primarily driven by familiarity-based memory processes. While the homozygous H1R-KO mice performed similar to the heterozygous H1R-KO and WT mice during the acquisition of a PM, as measured with an accelerating rotarod, after a retention interval of 7 days their performance was impaired relative to the heterozygous H1R-KO and WT mice. These findings suggest that, both, ELM and long-term PM are impaired in the homozygous H1R-KO mice. Neurochemical assays revealed that the H1R-KO mice had significantly lower levels of AChE activity in the dentate gyrus (DG) and CA1 subregions of the hippocampus as compared with the WT mice. The homozygous H1R-KO mice also displayed significantly reduced dihydroxyphenylacetic acid (DOPAC) levels and a reduced DOPAC/DA ratio in the cerebellum, suggesting that the DA turnover in the cerebellum is decelerated in homozygous H1R-KO mice. In conclusion, homozygous H1R-KO mice display severe long-term memory deficits in, both, ELM and PM, which coincide with changes in AChE activity in the hippocampus as well as DA turnover in the cerebellum. The importance of these findings for Alzheimer's (AD) and Parkinson's disease (PD) is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.