Abstract

Before 2.7 Ga, 14 igneous and detrital zircon age peaks and 9 large igneous province (LIP) age peaks are robust and statistically significant. Correlation analysis indicates a synchronous association among these peaks and power spectral analysis shows 91, 114–127 and 182-Myr cycles. These age cycles may be related to mantle plume or mantle overturn events, and to the time it takes to reach threshold temperature gradients for thermo-chemical destabilization in the lowermost mantle. Most zircon age peaks are transferred into younger detrital sediments, which does not favor an origin of the peaks by selective erosion. Correlation of eight pre-2.7-Ga LIP age peaks with zircon age peaks is consistent with a genetic relationship between mantle melting events and felsic crustal production and supports an interpretation of pre-2.7-Ga age peaks as growth rather than preservation peaks produced during craton collisions. Also consistent with the growth peak interpretation is the apparent absence of collisional orogens older than 2.7 Ga. An increasing number of geographic age peak sites from 4 to 2.8 Ga suggests production and survival of only small volumes of continental crust during this time and supports an episodic model for continental crustal growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call