Abstract
During bone fracture repair, mesenchymal stem cells (MSC) differentiate into chondrocytes and osteoblasts to form a fracture callus. Our laboratory previously reported that alcohol-exposed rodents with a surgically created tibia fracture display deficient fracture callus formation and diminished signs of endochondral ossification characterized by the absence of chondrocytes and mature hypertrophic chondrocytes, suggesting that alcohol may inhibit MSC differentiation. These findings led to our hypothesis that alcohol exposure inhibits mesenchymal stem cell chondrogenic differentiation within the developing fracture callus. In the present study, we utilized a lineage-tracing approach to determine which stage(s) of chondrogenic differentiation are affected by alcohol exposure. We utilized lineage-specific reporter mice to determine the effects of alcohol on MSC and early and late chondrogenic cell frequencies within the fracture callus. In addition, serially sectioned slides were stained immunofluorescently and immunohistochemically and quantified to determine the effect of alcohol on cell proliferation and apoptosis, respectively, within the fracture callus of alcohol-administered rodents. Alcohol-administered rodents had a reduced fracture callus area at 4, 6, and 9days postfracture. Alcohol had no effect on apoptosis in the fracture callus at any of the examined timepoints. Alcohol-administered rodents had significantly fewer proliferative cells in the fracture callus at 9days postfracture, but no effect on cell proliferation was observed at earlier fracture callus timepoints. Alcohol-administered rodents had reduced Collagen2a1- and Collagen10a1-expressing cells in the developing fracture callus, suggesting that alcohol inhibits both early chondrogenic differentiation and later chondrocyte maturation during fracture callus development. The data suggest that alcohol could affect normal fracture healing through the mitigation of MSC chondrogenic differentiation at the callus site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.