Abstract
ABSTRACT Let C be a category of topological spaces and continuous functions which is full, hereditary and closed under homeomorphisms and products. If A is a subclass of C, let E(A) be the full subcategory of C whose objects are the subspaces in A. In this paper we characterize the epireflective subcategories of C containing A and contained in E(A) by introducing a “semiclosure” operator which is a generalization for the “idempotent semi-limit” operator introduced by S.S. Hong (see [5]) with respect to Top o. In case A is extensive in C, so that E(A) = C, all the extensive subcategories of C containing A are thus characterized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.