Abstract
A commutative residuated lattice A is said to be subidempotent if the lower bounds of its neutral element e are idempotent (in which case they naturally constitute a Brouwerian algebra A*). It is proved here that epimorphisms are surjective in a variety K of such algebras A (with or without involution), provided that each finitely subdirectly irreducible algebra B in K has two properties: (1) B is generated by lower bounds of e, and (2) the poset of prime filters of B* has finite depth. Neither (1) nor (2) may be dropped. The proof adapts to the presence of bounds. The result generalizes some recent findings of G. Bezhanishvili and the first two authors concerning epimorphisms in varieties of Brouwerian algebras, Heyting algebras and Sugihara monoids, but its scope also encompasses a range of interesting varieties of De Morgan monoids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.