Abstract

Postmetamorphic froglets of Xenopus laevis regenerate hypomorphic unbranched spikes from amputated arm stumps. These are composed primarily of cartilage, produced from blastemalike structures sparsely populated with cells and rich in connective tissue. Some consider these outgrowths to be an example of epimorphic regeneration produced from blastemas, albeit deficient ones. Others interpret them as a case of tissue regeneration derived from fibroblastemas augmented by chondrocytes and periosteal and perichondrial fibroblasts. To resolve these alternatives, forelimbs were amputated proximal to the wrist, skinned, and inserted through the body wall into the abdominal cavity. In the absence of skin, epidermal wound healing failed to occur and blastemas could not develop. After 2 months, by which time controls had regenerated spikes averaging 3.38 mm long, the denuded stumps had not given rise to outgrowths. They typically developed cartilaginous caps on the severed ends of the radius-ulna, and in rare cases formed amorphous growths of cartilage. If blastema formation is considered diagnostic of epimorphic regeneration and tissue regeneration can proceed in the absence of epidermal wound healing and blastema formation, these findings lead to the conclusion that Xenopus limb regeneration is epimorphic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.