Abstract

Fast activities (FA) at seizure onset have been increasingly described as a useful signature of the epileptogenic zone (EZ) in patients undergoing intracranial EEG recordings. Different computer-based signal analysis methods have thus been developed for objectively quantifying ictal FA. Whether these methods detect FA in all forms of focal epilepsies, whether they provide similar information than visual analysis (VA), and whether they might help for the surgical decision remain crucial issues. We thus conducted a retrospective study in 21 consecutive patients suffering from drug-resistant seizures studied by SEEG recordings. Ictal FA were quantified using the Epileptogenicity Maps (EM) method that we recently developed and which generates, by adopting a neuroimaging approach, statistical parametric maps of FA ranging from 60 to 100 Hz (FA60−100). Ictal FA were analyzed blindly using VA and EM, and the prognostic significance of removing areas exhibiting FA60−100 at seizure onset was evaluated. A significant ictal FA60−100 activation was found in all patients, and in 92.6% of all the 68 seizures recorded, whatever the epilepsy type. The overlap ratio (OR) between VA and EM was significantly better for defining the regions spared at seizure onset than those from which seizure arose (p < 0.001), especially in temporal or temporal “plus” epilepsies. EM and VA were much more discordant to define the EZ, with a mean number of electrode contacts involved at seizure onset significantly higher with EM than with VA (p = <0.0001). Seizure outcome correlated with the resection ratio for FA60−100, which was significantly higher in seizure-free (Engel's class Ia) than in non seizure-free patients (class Ic-IV) (p = 0.048). The quantification of FA at seizure onset can bring information additional to clinical expertise that might contribute to define accurately the cortical region to be resected.

Highlights

  • MATERIALS AND METHODSThe primary aim of epilepsy surgery is to remove the epileptogenic zone (EZ), i.e., the minimum amount of cortex that must be resected to produce seizure freedom

  • To evaluate the prognostic value of removing the brain regions displaying significant FA60−100 at seizure onset, a resection mask was delineated on post-operative 3-D T1 MRI of each patient, co-registered with both anatomical and peri-implantation MRI, allowing to compare the extent of the resection with Epileptogenicity Maps (EM)

  • The last decade, a growing field of research has focused on intracranially-recorded interictal events, named high-frequency oscillations (HFO, 80–500 Hz), that could be a relevant signature of the EZ [26]

Read more

Summary

Introduction

MATERIALS AND METHODSThe primary aim of epilepsy surgery is to remove the epileptogenic zone (EZ), i.e., the minimum amount of cortex that must be resected to produce seizure freedom. Even when using such iEEG information, epilepsy surgery still fails in a substantial ratio of patients [1] This means that iEEG criteria used for identifying the epileptogenic brain tissue are not clearly determined nor understood. The resection of brain regions exhibiting FA at seizure onset seems to predict a favorable surgical outcome [5, 11, 15,16,17,18]. This paves the way to the development of quantitative FA-based indices to guide epilepsy surgery

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.