Abstract

It has previously been shown that prolonged (60-min) low-intensity electrical stimulation of a kindled focus in the basolateral nucleus of the amygdala (BLA) of Wistar rats resulted in the development of self-sustained status epilepticus (SSSE) with predominantly partial seizures and subsequent brain damage in the ipsilateral hemisphere. In the present study, using high-intensity (700 μA) pulsed-train electrical stimulation of the BLA for 25 min, SSSE was induced in both kindled and non-kindled Wistar rats, demonstrating that under these experimental conditions prior kindling is not necessary to induce SSSE. Thus, all subsequent experiments were done in non-kindled rats of different strains (Wistar, Sprague–Dawley) and genders. Three distinct behavioral types of SSSE were observed: (1) continuous partial seizures; (2) continuous partial seizures, repeatedly interrupted by generalized convulsive seizures; and (3) continuous generalized convulsive seizures. These three forms of SSSE were seen in both strains and genders, although the percentage of rats in each strain and gender developing a specific type of SSSE differed. Rats spontaneously recovered from SSSE after between 3 and 8 h on average, the SSSE duration depending on SSSE type, rat strain and gender. Following SSSE, rats were monitored with a video- and EEG-recording system for occurrence of spontaneous recurrent seizures (SRS). Overall, about 80% of the rats developed epilepsy with SRS after SSSE, but the proportion of rats developing SRS depended on the type of SSSE. Only 33% of the rats developed SRS after a partial SSSE, compared to >90% in case of either type 2 or type 3 SSSE with generalized convulsive seizures. Interruption of different forms of SSSE with diazepam after 90 min prevented development of epilepsy, while a generalized SSSE duration of 4 h consistently produced epilepsy in >90% of rats. Histologic analysis of rat brains after the different SSSE types indicated that neuronal loss after partial SSSE was much more regionally restricted and less severe compared to neuronal damage after SSSE with generalized convulsive seizures, which was similar to the brain damage seen in the kainate and pilocarpine models of temporal lobe epilepsy. These experiments establish that prolonged electrical stimulation of the BLA induces different forms of SSSE that resemble nonconvulsive and convulsive types of SE in humans. These different forms of SSSE induce epilepsy with SRS and brain pathology reminiscent of temporal lobe epilepsy with hippocampal sclerosis. The rat model provides a new tool to mimic different types of SE and investigate the pathogenesis underlying their long-term complications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.