Abstract

The exact mechanisms leading to the occurrence of epileptic seizures in humans are still poorly understood. It is widely accepted, however, that the process of seizure generation is closely associated with an abnormal synchronization of neurons. In order to investigate this process, we here measure phase synchronization between different regions of the brain using intracranial EEG recordings. Based on our preliminary finding of a preictal drop in synchronization, we investigate whether this phenomenon can be used as a sensitive and specific criterion to characterize a preseizure state and to distinguish this state from the interictal interval. Applying an automated technique for detecting decreased synchronization to EEG recordings from a group of 18 patients with focal epilepsy comprising a total of 117 h, we observe a characteristic decrease in synchronization prior to 26 out of 32 analyzed seizures at a very high specificity as tested on interictal recordings. The duration of this preictal state is found to range from several minutes up to a few hours. Investigation of the spatial distribution of preictal desynchronization indicates that the process of seizure generation in focal epilepsy is not necessarily confined to the focus itself but may instead involve more distant, even contralateral areas of the brain. Finally, we demonstrate an intrahemispheric asymmetry in the spatial dynamics of preictal desynchronization that is found in the majority of seizures and appears to be an immanent part of the mechanisms underlying the initiation of seizures in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call