Abstract

Epilepsy is a group of neurological disorders identifiable by infrequent but recurrent seizures. Seizure prediction is widely recognized as a significant problem in the neuroscience domain. Developing a Brain-Computer Interface (BCI) for seizure prediction can provide an alert to the patient, providing a buffer time to get the necessary emergency medication or at least be able to call for help, thus improving the quality of life of the patients. A considerable number of clinical studies presented evidence of symptoms (patterns) before seizure episodes and thus, there is large research on seizure prediction, however, there is very little existing literature that illustrates the use of structured processes in machine learning for predicting seizures. Limited training data and class imbalance (EEG segments corresponding to preictal phase, the duration just before the seizure, to about an hour prior to the episode, are usually in a tiny minority) are a few challenges that need to be addressed when employing machine learning for this task. In this paper we present a comparative study of various machine learning approaches that can be used for classification of EEG signals into preictal and interictal (Interictal is the time between seizures) using the features extracted from the intracranial EEG. Publicly available data has been used for this purpose for both human and canine subjects. After data pre-processing and extensive feature extraction, different models are trained and are effectively used to analyze the temporal dynamics of the brain (interictal and preictal) in affected subjects. We present the improved results for various classification algorithms, with AUROC values of best classification models at 0.99.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.