Abstract
The automatic detection of epileptic seizures from electroencephalography (EEG) signals is crucial for the localization and classification of epileptic seizure activity. However, seizure processes are typically dynamic and nonstationary, and thus, distinguishing rhythmic discharges from nonstationary processes is one of the challenging problems. In this paper, an adaptive and localized time-frequency representation in EEG signals is proposed by means of multiscale radial basis functions (MRBF) and a modified particle swarm optimization (MPSO) to improve both time and frequency resolution simultaneously, which is a novel MRBF-MPSO framework of the time-frequency feature extraction for epileptic EEG signals. The dimensionality of extracted features can be greatly reduced by the principle component analysis algorithm before the most discriminative features selected are fed into a support vector machine (SVM) classifier with the radial basis function (RBF) in order to separate epileptic seizure from seizure-free EEG signals. The classification performance of the proposed method has been evaluated by using several state-of-art feature extraction algorithms and other five different classifiers like linear discriminant analysis, and logistic regression. The experimental results indicate that the proposed MRBF-MPSO-SVM classification method outperforms competing techniques in terms of classification accuracy, and shows the effectiveness of the proposed method for classification of seizure epochs and seizure-free epochs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.