Abstract

Objective: Most studies in epileptic seizure detection and classification focused on classifying different types of epileptic seizures. However, localization of the epileptogenic zone in epilepsy patient brain’s is paramount to assist the doctor in locating a focal region in patients screened for surgery. Therefore, this paper proposed robust models for the localization of epileptogenic areas for the success of epilepsy surgery. Method: Advanced feature extraction techniques were proposed as effective feature extraction techniques based on Electroencephalogram (EEG) rhythms extracted from Fourier Basel Series Expansion Multivariate Empirical Wavelet Transform (FBSE-MEWT). The proposed extracted EEG rhythms of [Formula: see text] and [Formula: see text] features were used to obtain a joint instantaneous frequency and amplitude components using a sub-band alignment approach. The features are used in Sparse Autoencoder (SAE), Deep Belief Network (DBN), and Support Vector Machine (SVM) with the optimized capability to develop three new models: 1. FMEWT–SVM 2. FMEWT_SAE–SVM, and 3. FMEWT–DBN–SVM. The EEG signal was preprocessed using a proposed Multiscale Principal Component Analysis (mPCA) to denoise the noise embedded in the signal. Main results: The developed models show a significant performance improvement, with the SAE–SVM outperforming other proposed models and some recently reported works in literature with an accuracy of 99.7% using [Formula: see text]-rhythms in channels 1 and 2. Significance: This study validates the EEG rhythm as a means of discriminating the embedded features in epileptic EEG signals to locate the focal and non-focal regions in the epileptic patient’s brain to increase the success of the surgery and reduce computational cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call