Abstract

ObjectiveWe performed a quantitative hemispheres analysis in epileptic children with hemispheres’ asymmetry -due to unilateral dysplastic malformation- in order to recognize subtle volumetric changes of the contralateral and apparently unaffected hemisphere. Methods13 children with Hemimegalencephaly (HME) and 20 with Hemimicrencephaly (Hme) were clustered in subgroups according to underlying hemispheric cortical dysplastic malformation and epilepsy pattern. 3D FSPGR T1weighted images were used to assess white and grey matter volumes for both hemispheres. Each volumetric parameter was compared with the average of an age-matched healthy control group. ResultsHME subgroups: HME with pachygyria and focal (HME-PG-F; n 6) or multifocal epilepsy (HME-PG-MF; n.7). In both subgroups affected hemisphere (AH) volume was increased and contralateral hemisphere (CH) showed white matter volume reduction; in HME-PG-MF grey matter volume of CH was more reduced than HME-PG-F.Hme subgroups: Hme with polimicrogyria and focal epilepsy (Hme-PMG-F; n.8), Hme with giant subcortical nodular heterotopia and focal (Hme-SCH-F; n.6) or multifocal epilepsy (Hme-SCH-MF; n.6). In all subgroups AH volume was reduced; the volume of CH was significantly increased in Hme-PMG-F and Hme-SCH-MF while it was not significantly increased in Hme-SCH-F compared to affected hemisphere. ConclusionsIn patients with hemispheres’ asymmetry, quantitative high-resolution MRI offers a more objective assessment of brain structures volume. The type of hemispheric dysplastic malformation together with the age of epilepsy onset and epileptic pattern may contribute to changes in contralateral and apparently unaffected hemisphere. Future studies are warranted to evaluate whether the early identification of these changes might help in planning future antiepileptic treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call