Abstract
Epilepsy is a common neurological disease characterized by seizures. A person with a seizure onset can lose consciousness which in turn can lead to fatal accidents. Electroencephalogram (EEG) is a recording of the electrical signals from the brain which is used to analyse the epileptic seizures. Physical visual examination of the EEG by trained neurologists is subjective and highly difficult due to the non-linear complex nature of the EEG. This opens a window for automatic detection of epileptic seizures using machine learning methods. In this work, we have used a standard database that consists of five different sets of EEG data including the epileptic EEG. Using this data, we have devised a novel 22 possible clinically significant cases with the combination of binary and multi class type of classification problem to automatically classify epileptic EEG. As the EEG is non-linear, we have devised 11 statistically significant non-linear entropy features to extract from this database. These features are fed to 10 different classifiers of various types for each of the 22 clinically significant cases and their classification accuracy is reported for 10-fold cross validation. Random Forest and Optimized Forest classifiers reported accuracies above 90% for all 22 cases considered in this study. Such vast possible clinically significant 22 cases from the combination of the data from the database considered has not been in the literature with the best of the knowledge of the authors. Comparing with the literature, several studies have presented one or few combinations of these 22 cases in this work. In comparison to similar works, the accuracies obtained by the classifiers were highly competitive. In addition, a novel integrated epilepsy detection index named EpilepIndex (IED) is able to differentiate between epileptic EEG and a normal EEG with 100% accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.