Abstract

Enhancer-promoter interactions (EPIs) regulate the expression of specific genes in cells, which help facilitate understanding of gene regulation, cell differentiation and disease mechanisms. EPI identification approaches through wet experiments are often costly and time-consuming, leading to the design of high-efficiency computational methods is in demand. In this paper, we propose a deep neural network-based method named EPIHC to predict Enhancer-Promoter Interactions with Hybrid features and Communicative learning. EPIHC extracts enhancer and promoter sequence-derived features using convolutional neural networks (CNN), and then we design a communicative learning module to capture the communicative information between enhancer and promoter sequences. Besides, EPIHC takes the genomic features of enhancers and promoters into account, incorporating with the sequence-derived features to predict EPIs. The computational experiments show that EPIHC outperforms the existing state-of-the-art EPI prediction methods on the benchmark datasets and chromosome-split datasets, and the study reveals that the communicative learning module can bring explicit information about EPIs, which is ignored by CNN, and provide explainability about EPIs to some degree. Moreover, we consider two strategies to improve the performances of EPIHC in the cross-cell line prediction, and experimental results show that EPIHC constructed on some cell lines can exhibit good performances for other cell lines. The codes and data are available at https://github.com/BioMedicalBigDataMiningLab/EPIHC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call