Abstract

BackgroundSmall cell lung cancer (SCLC) is an aggressive neuroendocrine lung cancer. SCLC progression and treatment resistance involve epigenetic processes. However, links between SCLC DNA methylation and drug response remain unclear. We performed an epigenome-wide study of 66 human SCLC cell lines using the Illumina Infinium MethylationEPIC BeadChip array. Correlations of SCLC DNA methylation and gene expression with in vitro response to 526 antitumor agents were examined.ResultsWe found multiple significant correlations between DNA methylation and chemosensitivity. A potentially important association was observed for TREX1, which encodes the 3′ exonuclease I that serves as a STING antagonist in the regulation of a cytosolic DNA-sensing pathway. Increased methylation and low expression of TREX1 were associated with the sensitivity to Aurora kinase inhibitors AZD-1152, SCH-1473759, SNS-314, and TAK-901; the CDK inhibitor R-547; the Vertex ATR inhibitor Cpd 45; and the mitotic spindle disruptor vinorelbine. Compared with cell lines of other cancer types, TREX1 had low mRNA expression and increased upstream region methylation in SCLC, suggesting a possible relationship with SCLC sensitivity to Aurora kinase inhibitors.We also identified multiple additional correlations indicative of potential mechanisms of chemosensitivity. Methylation of the 3′UTR of CEP350 and MLPH, involved in centrosome machinery and microtubule tracking, respectively, was associated with response to Aurora kinase inhibitors and other agents. EPAS1 methylation was associated with response to Aurora kinase inhibitors, a PLK-1 inhibitor and a Bcl-2 inhibitor. KDM1A methylation was associated with PLK-1 inhibitors and a KSP inhibitor. Increased promoter methylation of SLFN11 was correlated with resistance to DNA damaging agents, as a result of low or no SLFN11 expression. The 5′ UTR of the epigenetic modifier EZH2 was associated with response to Aurora kinase inhibitors and a FGFR inhibitor. Methylation and expression of YAP1 were correlated with response to an mTOR inhibitor. Among non-neuroendocrine markers, EPHA2 was associated with response to Aurora kinase inhibitors and a PLK-1 inhibitor and CD151 with Bcl-2 inhibitors.ConclusionsMultiple associations indicate potential epigenetic mechanisms affecting SCLC response to chemotherapy and suggest targets for combination therapies. While many correlations were not specific to SCLC lineages, several lineage markers were associated with specific agents.

Highlights

  • Small cell lung cancer (SCLC) is a highly aggressive neuroendocrine tumor prone to early metastasis, short survival, and limited options for effective treatment [1,2,3]

  • We further discuss whether those associations were in agreement with the correlations of methylation of regions of the same genes with drug response and whether such associations could be explained by the effect of DNA methylation on gene expression

  • Our analysis of TREX1 showed that while our novel initial findings of association of gene expression and drug response with DNA methylation measures were based on all probes and gene regions without prior pre-selection, these associations were validated by the correlations of the Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) data which were based on promoter-enriched methylation measures

Read more

Summary

Introduction

Small cell lung cancer (SCLC) is a highly aggressive neuroendocrine tumor prone to early metastasis, short survival, and limited options for effective treatment [1,2,3]. Despite an unmet need to identify new therapies, progress in SCLC treatment has been hindered by rapidly acquired resistance to therapy resulting in limited and transient response to second and third line chemotherapeutic and immunotherapeutic agents [2]. Links between SCLC DNA methylation and drug response remain unclear. Correlations of SCLC DNA methylation and gene expression with in vitro response to 526 antitumor agents were examined

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call