Abstract

CpG islands are present in one-half of all human and mouse genes and typically overlap with promoters or exons. We developed a method for high-resolution analysis of the methylation status of CpG islands genome-wide, using arrays of BAC clones and the methylation-sensitive restriction enzyme NotI. Here we demonstrate the accuracy and specificity of the method. By computationally mapping all NotI sites, methylation events can be defined with single-nucleotide precision throughout the genome. We also demonstrate the unique expandability of the array method using a different methylation-sensitive restriction enzyme, BssHII. We identified and validated new CpG island loci that are methylated in a tissue-specific manner in normal human tissues. The methylation status of the CpG islands is associated with gene expression for several genes, including SHANK3, which encodes a structural protein in neuronal postsynaptic densities. Defects in SHANK3 seem to underlie human 22q13 deletion syndrome. Furthermore, these patterns for SHANK3 are conserved in mice and rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.