Abstract
Epigenetics confers adaptability and survival advantage to an organism. Most epigenetic processes demonstrate memory and heritability. DNA methylation is an epigenetic process that adds imprints which can be inherited during cell division and across generations. DNA methylation adds an additional level of information to the basic DNA sequence and can influence chromatin organization and the function of the DNA sequence. In bacteria, it works as a defence strategy and preserves genome integrity. DNA methylation in eukaryotes has been implicated in a large number of cellular regulatory processes and is implied in development, differentiation, life style diseases and cancer. Mammals have an intricate DNA methylation machinery with dNMT1, 3A and 3B enzymes. The human X chromosome inactivation, an example of differential regulation of homologous chromosomes, is known to involve many epigenetic processes with intricate interactions of lncRNAs, miRNAs and DNA methylation. Drosophila possesses very low levels of DNA methylation with only dNMT2 gene. Since Drosophila is an important model organism for study of development and differentiation, the implications of this sparse DNA methylation and the lack of DNA methylation machinery in Drosophila is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.