Abstract

DNA methylation and histone modification promote changes in chromatin structure that may affect gene expression in a heritable manner without directly altering the genome. As such, these phenomena are considered to be epigenetic in nature and are believed to contribute to the normal processes of human development but also to aberrant disease states such as cancer. Epigenetic processes probably contribute mechanistically to toxicant-induced changes in gene expression and cancer. Nickel is a potent human carcinogen that has been shown to alter DNA methylation patterns and affect histone acetylation status. Both of these changes are associated with the proximity of the affected regions to heterochromatin. The two processes probably occur in concert in mammalian cells. However, in yeast cells, DNA methylation is absent, and nickel is capable of regulating gene expression through changes in acetylation of the lysine residues in the N terminal tail of histone H4. Arsenic is another important environmental carcinogen, and it is methylated during its metabolism. Hence, it has been proposed that arsenic metabolism may deplete intracellular methyl group stores and thereby lead to changes in DNA methylation that may be involved in carcinogenesis. However, the data concerning DNA methylation changes following arsenic exposure are equivocal, leading researchers to propose that DNA hypo- and hypermethylation are both important in the development of arsenic-induced cancers. Heightened awareness by toxicologists of the importance of epigenetics in normal human development and in carcinogenesis should lead to the identification of other toxicants that manifest their effects, at least in part, via epigenetic mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.