Abstract

“Epigenetics is the study of how your behaviors and environment can cause changes that affect the way your genes work. Unlike genetic changes, epigenetic changes are reversible and do not change your DNA sequence, but they can change how your body reads a DNA sequence” (https://www.cdc.gov/genomics/disease/epigenetics.htm). Epigenetic interactions, along with the genetic expression in innate cells, change the structure and function of chromatin, and thus, turn the genes on and off. Epigenetic changes influence disease load and resistance and play an important role in health maintenance and almost all medical disorders, and differs significantly with sex and ethnicity. Epigenetic changes may have either positive or detrimental effects on the immune system. They are long-lasting, increase a host’s susceptibility to infections and medical pathologies, and affect the efficacy of vaccines. Recent studies have indicated that detrimental epigenetic changes can be mended. Safe and effective mechanisms to reverse detrimental epigenetic scars will have broad medical implications, decrease mortality after infections, and protect the elderly against infections, autoimmune diseases, and cancer. These therapies might be useful for the successful application of vaccines in countries where HIV, parasite infestation, malaria, and other chronic diseases are endemic, and also for a better effect of vaccines in geriatric patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.