Abstract

The hallmarks of epigenetics – the memory of defining earlier developmental events and the distinction of active and inactive genes – are exemplified by imprinted genes. In this article, I shall consider the imprinted Gnas locus in some detail. Gnas encodes the stimulatory G-protein subunit, Gsα, an essential intermediate between receptor coupling and cyclic adenosine monophosphate generation. It provides an excellent illustration of the pleiotropic effects of imprinted genes, particularly on skeletal growth and metabolism, and is a powerful example of the conflicting effects of imprinted genes with opposing patterns of imprinting. I shall describe the effects of Gsα deficiency in humans and the knowledge gained from genetic manipulation in the mouse. Finally, given the pervasive effects of imprinted genes, I shall discuss the likelihood that epigenetic deregulation, for example of imprinted genes, could contribute to the developmental programming of chronic adult diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.