Abstract

The accumulation of epigenetic changes was proposed to contribute to the age-related increase in the risk of most common diseases. In this study on 230 monozygotic twin pairs (MZ pairs), aged 18–89 years, we investigated the occurrence of epigenetic changes over the adult lifespan. Using mass spectrometry, we investigated variation in global (LINE1) DNA methylation and in DNA methylation at INS, KCNQ1OT1, IGF2, GNASAS, ABCA1, LEP, and CRH, candidate loci for common diseases. Except for KCNQ1OT1, interindividual variation in locus-specific DNA methylation was larger in old individuals than in young individuals, ranging from 1.2-fold larger at ABCA1 (P = 0.010) to 1.6-fold larger at INS (P = 3.7 × 10−07). Similarly, there was more within-MZ-pair discordance in old as compared with young MZ pairs, except for GNASAS, ranging from an 8% increase in discordance each decade at CRH (P = 8.9 × 10−06) to a 16% increase each decade at LEP (P = 2.0 × 10−08). Still, old MZ pairs with strikingly similar DNA methylation were also observed at these loci. After 10-year follow-up in elderly twins, the variation in DNA methylation showed a similar pattern of change as observed cross-sectionally. The age-related increase in methylation variation was generally attributable to unique environmental factors, except for CRH, for which familial factors may play a more important role. In conclusion, sustained epigenetic differences arise from early adulthood to old age and contribute to an increasing discordance of MZ twins during aging.

Highlights

  • The risk of most common diseases increases with age

  • A cross-sectional study that focussed on DNA methylation at the COX7A1 locus reported greater interindividual variation in 20 elderly individuals (> 60 years old) compared with 20 young individuals (< 30 years old; Ronn et al, 2008), indicating that DNA methylation can change with age in a direction that differs per individual

  • With the exception of KCNQ1OT1, methylation variation was always larger in old individuals than in young individuals, irrespective of age-related differences in mean DNA methylation

Read more

Summary

Introduction

The risk of most common diseases increases with age. A lifetime of accumulated epigenetic changes was proposed to contribute to the development of such diseases (Bjornsson et al, 2004). Various studies have investigated whether DNA methylation can change with increasing calendar age. A cross-sectional study of limited sample size reported the genome-wide absence of changes in mean DNA methylation between young (26 years) and old (68 years) individuals (Eckhardt et al, 2006). Cross-sectional studies that focus on changes in mean DNA methylation can only detect age-related changes that are in the same direction for most individuals. A cross-sectional study that focussed on DNA methylation at the COX7A1 locus reported greater interindividual variation in 20 elderly individuals (> 60 years old) compared with 20 young individuals (< 30 years old; Ronn et al, 2008), indicating that DNA methylation can change with age in a direction that differs per individual

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call