Abstract

Simple SummaryBreast cancer is a heterogeneous disease that has complex causes and mechanisms of development. Currently, patient treatment options depend on the breast cancer molecular subtype, which is classified based on the presence or absence of hormone receptors and HER2. However, this classification system has limitations in terms of predicting responsiveness to anticancer drugs and patient outcomes. In this study, we present a new approach to classifying molecular breast cancer subtypes: it is based on changes in histone modifications in the promoter region of the MAGEA12 locus, which we found related closely to MAGEA12 expression and MAGEA12-associated malignancy of breast cancer cells.After decades-long efforts to diagnose and treat breast cancer, the management strategy that has proved most successful to date is molecular-subtype-specific inhibition of the hormone receptors and HER2 that are expressed by individual cancers. Melanoma-associated antigen (MAGE) proteins comprise >40 highly conserved members that contain the MAGE homology domain. They are often overexpressed in multiple cancers and contribute to cancer progression and metastasis. However, it remains unclear whether the biological activity arising from MAGE gene expression is associated with breast cancer subtypes. In this study, we analyzed the RNA-sequencing (RNA-seq) data of 70 breast cancer cell lines and found that MAGEA12 and MAGEA3 were highly expressed in a subset of these lines. Significantly, MAGEA12 and MAGEA3 expression levels were independent of hormone receptor expression levels but were closely associated with markers of active histone modifications. This indicates that overexpression of these genes is attributable to epigenetic deregulation. RNA-seq of MAGEA12-depleted cells was then used to identify 382 candidate targets of MAGEA12 that were downregulated by MAGEA12 depletion. Furthermore, our gain-of-function experiments showed that MAGEA12 overexpression promoted aggressive behaviors of malignant breast cancer cells, including enhancing their cell migration and invasion. These changes were associated with increased epigenetic deregulation of the MAGEA12 signature genes. Thus, MAGEA12 may play an important role in breast cancer malignancy. Taken together, our findings suggest that MAGEA12 could be a promising therapeutic target in breast cancer, and its overexpression and epigenetic changes could serve as subtype classification biomarkers.

Highlights

  • Breast cancer is the most common cancer in women worldwide [1,2]

  • Our data suggest that the aberrant expression of MAGEA12 and MAGEA3 genes may be useful for classifying and predicting malignant breast cancer phenotypes

  • Consistent with this, we found that MAGEA12 and MAGEA3 expression was strongly correlated in breast cancer

Read more

Summary

Introduction

Breast cancer is the most common cancer in women worldwide [1,2]. In recent years, the number of breast cancer patients has risen steadily [3], and there has been a gradual increase in young breast cancer patients [4,5]. Recurrence is very common in breast cancer, and the pattern of recurrence differs depending on the cancer subtype. Breast cancer is largely categorized into the luminal, HER2+, and triplenegative breast cancer subtypes based on their immunohistochemical expression pattern of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptors (HER2) [8,9]. This hormone receptor-based subtype classification is currently used to target therapy and determine prognosis. Unpredictability caused by breast cancer heterogeneity limits this approach [10,11] This warrants efforts to discover more effective and compatible biomarkers that could serve as therapeutic targets

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call