Abstract

The epigenome, which comprises chromatin, associated proteins, and the pattern of covalent modification of DNA by methylation, sets up and maintains gene expression programs. It was originally believed that DNA methylation was the dominant reaction in determining the chromatin structure. However, emerging data suggest that chromatin can affect DNA methylation in both directions, triggering either de novo DNA methylation or demethylation. These events are particularly important for the understanding of cellular transformation, which requires a coordinated change in gene expression profiles. While genetic alterations can explain some of the changes, the important role of epigenetic reprogramming is becoming more and more evident. Cancer cells exhibit a paradoxical coexistence of global loss of DNA methylation with regional hypermethylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.