Abstract

SummaryEpigenetic silencing including histone modifications and DNA methylation is an important tumorigenic mechanism1 However, its role in cancer immunopathology and immunotherapy is poorly understood. Using ovarian cancers as our model, we found that enhancer of zeste homolog 2 (EZH2)-mediated histone H3 lysine 27 trimethylation (H3K27me3) and DNA methyltransferase (DNMT) 1-mediated DNA methylation repress the tumor production of Th1-type chemokines CXCL9 and CXCL10, and subsequently determine effector T cell trafficking to the tumor microenvironment. Treatment with epigenetic modulators removes the repression and increases effector T cell tumor infiltration, slows down tumor progression, and improves therapeutic efficacy of PD-L1 (B7-H1) checkpoint blockade2–4 and adoptive T cell transfusion5 in tumor bearing mice. Moreover, tumor EZH2 and DNMT1 are negatively associated with tumor infiltrating CD8+ T cells and patient outcome. Thus, epigenetic silencing of Th1-type chemokine is a novel tumor immune evasion mechanism. Selective epigenetic reprogramming alters T cell landscape6 in cancer and may enhance clinical efficacy of cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.