Abstract

BackgroundThe potential mechanisms regarding how methylation of microRNA(miRNA) CpG Island could regulate cancer cell chemo-resistance remains unclear. This study aims to explore the epigenetic dysregulation mechanism of miRNA-493 and the ability to modulate lung cancer cell chemotherapy resistance.MethodsReal-time quantitative PCR (qRT-PCR) and In situ hybridization (ISH) were used to analyze the expression of miR-493 in lung cancer cell lines and tumor tissue, respectively. Bisulfite sequencing PCR (BSP) was used to exam the promoter CpG Island of miR-493. The effect of miR-493 on chemosensitivity was evaluated by cell viability assays, apoptosis assays and in vivo experiment. The DNA damage was measured by γ-H2AX immunofluorescence. Luciferase reporter assay was used to assess the target genes of miR-493. Expression of target proteins and downstream molecules were analyzed by Western blot.ResultsmiR-493 is silenced in resistant lung cancer cell due to the aberrant DNA methylation. Enforced expression of miR-493 in lung cancer cells promotes chemotherapy sensitivity to cisplatin through impairing the DNA damage repair and increasing the cells apoptosis in vitro and in vivo. Furthermore, we identify that TCRP1 is a direct functional target of miR-493. Ectopic expression of TCRP1 attenuated increased apoptosis in miR-493-overexpressing lung cancer cells upon cisplatin treatment. Meanwhile, miR-493 level is negatively correlated with TCRP1 expression in lung cancer patients and TCRP1 expression were correlated with poor survival.ConclusionsOur results highlight that hyper-methylation of miR-493CpG island might play important roles in the development of lung cancer chemo-resistance by targeting TCRP1, which might be used as a potential therapeutic target in preventing the chemo-resistance of lung cancer.

Highlights

  • The potential mechanisms regarding how methylation of microRNA(miRNA) CpG Island could regulate cancer cell chemo-resistance remains unclear

  • The data indicated that the expression miR-493 was significantly restored after treatment with 5-AZA-dC (Fig. 1b), suggesting that this miRNA is probably silenced by DNA methylation in lung cancer cells

  • Using MTT, we found the IC50 values to cisplatin were decreased after 5-AZA-dC treatment in lung cancer lines (Fig. 1c), especially in resistant lung cancer cell A549/DDP, indicating that aberrant expression of miR-493 might involve to resistant abilities

Read more

Summary

Introduction

The potential mechanisms regarding how methylation of microRNA(miRNA) CpG Island could regulate cancer cell chemo-resistance remains unclear. This study aims to explore the epigenetic dysregulation mechanism of miRNA-493 and the ability to modulate lung cancer cell chemotherapy resistance. Drug resistance is a barrier for curative lung cancer therapies due in part to the Epigenetic regulation involving DNA methylation is a heritable and enzyme-induced modification in human, which modulate the expression of target mRNA without direct changing of the DNA sequences. The hypermethylation of promoter CpG Island affects tumor suppressive mRNAs, and tumor suppressive miRNAs. The hyper-methylation in the CpG islands of miRNA promoter can silence the expression of tumorsuppressive miRNAs or drug sensitizing miRNAs, resulting in oncogenic or chemo-resistant phenotypes in cancers. Recent studies by Xi et al [11] support this supposition by demonstrating that miR-487b is epigenetically silenced and involved in the pathogenesis of lung cancer

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call