Abstract

BackgroundCurrent diagnostic and prognostic tools for prostate cancer (PC) are suboptimal, resulting in overdiagnosis and overtreatment of clinically insignificant tumors. Thus, to improve the management of PC, novel biomarkers are urgently needed.ResultsIn this study, we integrated genome-wide methylome (Illumina 450K DNA methylation array (450K)) and RNA sequencing (RNAseq) data performed in a discovery set of 27 PC and 15 adjacent normal (AN) prostate tissue samples to identify candidate driver genes involved in PC development and/or progression. We found significant enrichment for homeobox genes among the most aberrantly methylated and transcriptionally dysregulated genes in PC. Specifically, homeobox gene MEIS2 (Myeloid Ecotropic viral Insertion Site 2) was significantly hypermethylated (p < 0.0001, Mann-Whitney test) and transcriptionally downregulated (p < 0.0001, Mann-Whitney test) in PC compared to non-malignant prostate tissue in our discovery sample set, which was also confirmed in an independent validation set including > 500 PC and AN tissue samples in total (TCGA cohort analyzed by 450K and RNAseq). Furthermore, in three independent radical prostatectomy (RP) cohorts (n > 700 patients in total), low MEIS2 transcriptional expression was significantly associated with poor biochemical recurrence (BCR) free survival (p = 0.0084, 0.0001, and 0.0191, respectively; log-rank test). Next, we analyzed another RP cohort consisting of > 200 PC, AN, and benign prostatic hyperplasia (BPH) samples by quantitative methylation-specific PCR (qMSP) and found that MEIS2 was significantly hypermethylated (p < 0.0001, Mann-Whitney test) in PC compared to non-malignant prostate tissue samples (AN and BPH) with an AUC > 0.84. Moreover, in this cohort, aberrant MEIS2 hypermethylation was significantly associated with post-operative BCR (p = 0.0068, log-rank test), which was subsequently confirmed (p = 0.0067; log-rank test) in the independent TCGA validation cohort (497 RP patients; 450K data).ConclusionsTo the best of our knowledge, this is the first study to investigate, demonstrate, and independently validate a prognostic biomarker potential for MEIS2 at the transcriptional expression level and at the DNA methylation level in PC.

Highlights

  • Current diagnostic and prognostic tools for prostate cancer (PC) are suboptimal, resulting in overdiagnosis and overtreatment of clinically insignificant tumors

  • MEIS2 was selected as candidate gene because we found it to be significantly hypermethylated and downregulated in PC compared to non-malignant prostate tissue samples analyzed by genome-wide methylome and transcriptome profiling

  • After quality control, the final Illumina 450K DNA methylation array (450K) dataset consisted of 27 PC and 15 adjacent normal (AN) samples and the final RNA sequencing (RNAseq) dataset of 22 PC and 12 AN samples (Fig. 1)

Read more

Summary

Introduction

Current diagnostic and prognostic tools for prostate cancer (PC) are suboptimal, resulting in overdiagnosis and overtreatment of clinically insignificant tumors. Several epigenetic candidate diagnostic markers for PC have been discovered through comparison of DNA methylation alterations in PC and non-malignant prostate tissue samples [5,6,7,8,9,10, 12]. Some of these methylation marker candidates have shown prognostic potential for prediction of time to biochemical recurrence (BCR) [5, 6, 9, 11, 12]. MEIS2 was selected as candidate gene because we found it to be significantly hypermethylated and downregulated in PC compared to non-malignant prostate tissue samples analyzed by genome-wide methylome and transcriptome profiling (see below)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call