Abstract

Differentiation of the somatic macronucleus of ciliates after sexual events involves the programmed excision of thousands of single-copy internal eliminated sequences (IESs) from the germ-line genome. We have studied two cell lines of Paramecium tetraurelia that have identical germ-line genomes but differ in their macronuclear genomes. In the IES- cell line, a 222-bp IES interrupting a coding sequence is reproducibly excised during macronuclear differentiation, whereas it is not in the IES+ cell line. In a cross between the two lines, the developmental alternative in maternally inherited, suggesting that it is epigenetically controlled by the old (prezygotic) macronucleus in each cell. Transformation of the macronucleus of both lines with plasmids carrying fragments of either version of the gene shows that the presence of the IES sequence in the old macronucleus results in retention of the IES in the new macronuclear genome of sexual progeny. This could be attributable to (1) inhibition of excision, or (2) repair of a double-strand gap left in the genomic sequence after constitutive excision of the IES, by a polymerization mechanism using a homologous IES+ template from the old macronucleus. The latter possibility is ruled out by experiments showing that modified IESs can inhibit excision without being copied in the new macronuclear genome. Possible mechanisms are discussed in the light of a quantitative analysis of excision inhibition by the maternal IES sequence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.