Abstract

Acute leukemias are aggressive malignancies of developmentally arrested hematopoietic progenitors. We sought here to explore the possibility that changes in hematopoietic stem/progenitor cells during development might alter the biology of leukemias arising from this tissue compartment. Using a mouse model of acute Tcell leukemia, we found that leukemias generated from fetal liver (FL) and adult bone marrow (BM) differed dramatically in their leukemia stem cell activity with FL leukemias showing markedly reduced serial transplantability as compared to BM leukemias. We present evidence that this difference is due to NOTCH1-driven autocrine IGF1 signaling, which is active in FL cells but restrained in BM cells by EZH2-dependent H3K27 trimethylation. Further, we confirmed this mechanism is operative in human disease and show that enforced IGF1 signaling effectively limits leukemia stem cell activity.These findings demonstrate that resurrecting dormant fetal programs in adult cells may represent an alternate therapeutic approach in human cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.