Abstract

The molecular mechanisms for IL2 gene-specific dysregulation during chronic human immunodeficiency virus type 1 (HIV-1) infection are unknown. Here, we investigated the role of DNA methylation in suppressing interleukin 2 (IL-2) expression in memory CD4(+) T cells during chronic HIV-1 infection. We observed that CpG sites in the IL2 promoter of CD4(+) T cells were fully methylated in naive CD4(+) T cells and significantly demethylated in the memory populations. Interestingly, we found that the memory cells that had a terminally differentiated phenotype and expressed CD57 had increased IL2 promoter methylation relative to less differentiated memory cells in healthy individuals. Importantly, early effector memory subsets from HIV-1-infected subjects expressed high levels of CD57 and were highly methylated at the IL2 locus. Furthermore, the increased CD57 expression on memory CD4(+) T cells was inversely correlated with IL-2 production. These data suggest that DNA methylation at the IL2 locus in CD4(+) T cells is coupled to immunosenescence and plays a critical role in the broad dysfunction that occurs in polyclonal T cells during HIV-1 infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call