Abstract

DNA methylation is an epigenetic mechanism controlling gene expression, and reduced methylation is associated with increased gene expression. We hypothesized that IL-17 cytokines are regulated by DNA methylation, are elevated in the circulation of preeclamptic women, and stimulate vascular neutrophil chemokine expression, which could account for vascular infiltration of neutrophils in preeclampsia. We found significantly reduced DNA methylation of IL17A, IL17E, and IL17F genes in omental arteries of preeclamptic women, significantly reduced methylation of IL2, which regulates IL-17-producing T-lymphocytes, and significantly reduced methylation of genes encoding neutrophil chemokines and TNFα receptors related to lymphocyte function. Maternal plasma levels of IL-17A were significantly elevated in the second trimester of preeclamptic pregnancy as compared to normal pregnancy. To test if methylation regulates IL-17 cytokines, a lymphocyte cell line (Jurkat) was cultured with a hypomethylating agent. Hypomethylation increased expression of IL17E (aka IL25), IL17F, and IL2. IL17A was not expressed by Jurkat cells. To test the potential role of IL-17 cytokines in vascular neutrophil infiltration associated with preeclampsia, human vascular smooth muscle cells were cultured with IL-17 cytokines. IL-17A, but not IL-17E or IL-17F, increased gene expression of neutrophil chemokines (IL-8, CXCL5, and CXCL6) that are increased in vascular smooth muscle of preeclamptic women. The monocyte chemokine, CCL-2, was not increased. TNFα also increased neutrophil chemokines. IL-17 cytokines are regulated by DNA methylation; IL-17A is elevated in preeclampsia and stimulates expression of neutrophil chemokines in vascular smooth muscle. IL-17A could be responsible for vascular infiltration of neutrophils in preeclampsia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call