Abstract
Retinoblastoma is a rare type of eye cancer of the retina that commonly occurs in early childhood and mostly affects the children before the age of 5. It occurs due to the mutations in the retinoblastoma gene (RB1) which inactivates both alleles of the RB1. RB1 was first identified as a tumor suppressor gene, which regulates cell cycle components and associated with retinoblastoma. Previously, genetic alteration was known as the major cause of its occurrence, but later, it is revealed that besides genetic changes, epigenetic changes also play a significant role in the disease. Initiation and progression of retinoblastoma could be due to independent or combined genetic and epigenetic events. Remarkable work has been done in understanding retinoblastoma pathogenesis in terms of genetic alterations, but not much in the context of epigenetic modification. Epigenetic modifications that silence tumor suppressor genes and activate oncogenes include DNA methylation, chromatin remodeling, histone modification and noncoding RNA-mediated gene silencing. Epigenetic changes can lead to altered gene function and transform normal cell into tumor cells. This review focuses on important epigenetic alteration which occurs in retinoblastoma and its current state of knowledge. The critical role of epigenetic regulation in retinoblastoma is now an emerging area, and better understanding of epigenetic changes in retinoblastoma will open the door for future therapy and diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.